作者:www.nenghua.com.cn 发布日期:2014-08-27 12:56 信息来源:http://www.lp1995.com
并网光伏逆变器的基本设计
无论采用何种技术,逆变器的基本设计都很明确,且非常相似。其核心就是将直流电压(光伏组件)转换成交流电压(可并网)的过程。在转变的过程中,不停地转换直流电的正负极连接,从而形成方向变化的交流电。所以,逆变器的关键部件是桥接开关(晶体管元件,见图1:a)),这个开关桥的一侧连接输入的直流电源,在另一侧连接交流电网。在工作过程中,只有两个相对的开关可以同时关闭。
如果将此开关桥的开关速度设置成与电网频率相同,则在理论上可以将桥的输出侧与电网连接。但是,由于这样输出的电流是方波,且强度没有变化,因此需要在输出端安装一个具有铁芯的电感器,用以将输出电流控制成为正弦波形状。桥的断开采用脉冲过程进行,从而形成与脉冲相关的较小电流分量。这样的电流分量可以对电感器的电流进行控制。脉冲的频率一般为20KHz , 这样就完全可以形成50Hz的电流,见图1:b)。
对于光伏逆变器来说,还有一个非常重要的设备不能遗漏:输入端的电容器,见图1: c ) 。电容器的作用是储存电能,确保来自发电侧的电流持续一致供给桥接开关,并通过与电网频率同步变化的桥进入电网。只有在输入电容器的容量足够大的情况下,才能够保证光伏发电系统的持续、正常运行。
图1:光伏逆变器的基本设计
图2描述了可用于直接并网的逆变器的基本功能。但在实际应用中,输入电压的范围具有一定的局限性。对于并网发电应用,其输入电压必须在任何时刻都高于电网的峰值电压。当电网电压的有效值为250V时,达到正常并网要求的发电源侧的最低电压应为354V。
与标准逆变器的基本设计不同,直接并网逆变器有很多方法来调整或提升输入电压范围。常用的逆变器技术方案与结构都各不相同:
图2:最常用的逆变器电路图表一览
上面提到的逆变器拓朴结构不仅在电气隔离方面不同,在可达到的效率、对电压的依赖性等方面也各不相同。因此,没有统一的公式来界定何种逆变器设计是最优秀的设计,用户必须要考虑到具体使用的逆变器特性。
无隔离变压器光伏逆变器的技术关键
目前,只要光伏发电站设计合理,完全可以经济运行。直接并入电网的无变压器型逆变器因为其低成本、高效率而日益受到重视。但是,该技术仍然被认为是“有问题的”。这一点将在下面进行检验和说明。
变压器将电能转化成磁能,再将磁能转化成电能。在输入与输出端之间安装的电气隔离装置导致的能量损失可达到1%,甚至高达2%。因此,无变压器型逆变器的运行效率要比变压器型逆变器高。这种技术还有很多其它的优点,例如材料消耗少、重量轻等。
总而言之,无变压器型逆变器相对体积较小、重量较轻、价格也比较便宜,在很多方面都比变压器型逆变器更具优势。虽然光伏发电站的运行和安全性都不需要采用电气隔离措施,在设计直接并网的逆变器时还是应该考虑到以下几个方面。
图5:外观相同,内部电路不同:变压器型和无变压器型两种Sunny Boy效率特性。
正常运行状态下的漏电电流
将来自光伏组件的电压采用高频率(20kHz)转换过程中,高频电压应等同于电网电压峰值;这些电压在逆变器内部被认为是干扰,滤波器可以阻断这些干扰,防止其进入电网。但在理论上,阻止来自发电电源侧的直流分量进入交流电网是不可能绝对实现的。
这样,根据所采用逆变器结构的不同,在交流输出中也将存在不同的对地直流电压分量。如果太阳能电池组和/或者其接线端对地存在交流电压,将产生“漏电电流”,通过寄生电容流向电池组接地点。
图6:Sunny Boy 2100TL逆变器光伏电池组对地电压
图7:Sunny Boy 5000TL HC多组串逆变器光伏电池组对地电压
下面我们以Sunny Boy 2100TL和Sunny Boy 5000TL HC两种逆变器为例。如上图所示。这两种逆变器的运行会在其电子部分产生与时间相关的电势,它们的光伏组件对地电压也不相同。Sunny Boy 2100TL采用H型桥结构,加在光伏组件上的电压为电网电压有效值的一半。
多组串逆变器SB5000TL HC则采用电容半桥结构。桥的中线直接连接在电网的中线上。这样的结果就是产生的对地电压只是50Hz的低电压值,其分量只是电网电压很小的一部分,只相当于变压器拓扑结构中的电压纹波量。
除了电网电压提升方面的考虑,漏电电流的大小还取决于光伏组件寄生电容的大小,该电容值大小与电池面积及组件与边框之间的距离相关。因此,关于漏电电流情况,应该在设计系统时就仔细考虑逆变器的结构和光伏组件尺寸。面积越大、电池与光伏组件边框之间的距离越小,产生的漏电电流就越大。无边框结构光伏组件的漏电电流值很低。然而,安装在不锈钢箔上的非晶电池会产生很大的漏电电流。
外部条件也会对漏电电流产生影响,因此不可避免会产生一定的波动。如果沉淀物或者清洁液弄湿了光伏组件,漏电电流就会增加;这些液体中的电子物质成分缩短电池与电池间的距离,造成漏电电流升高。
总之,光伏组件在运行时的漏电电流(正常情况下)取决于很多运行条件,没有定值来衡量。以H型桥逆变器(如Sunny Boy 2100TL)为例,在运行过程中光伏组件的漏电电流值在1-30mA/KWp范围内。
光伏组件中的故障电流
在并网应用的光伏电站中,只能使用电池片与边框有可靠绝缘的光伏组件。组件要具有双倍或超强的绝缘措施,并且要充分考虑光伏组件的系统耐压性,以保证即使在光伏系统运行状态下也可以触摸组件表面,不会造成危险。目前,所有的光伏组件可以达到Ⅱ级防护,在选择时并没有太严格的限制。
如上所述, 对于无变压器型逆变器,在运行时光伏组件上的电压可以是叠加了交流电网的同步电压值。当触摸组件表面时,可能会产生对地的故障电流。如果组件的绝缘足够好,一般来说很难有这样的电流产生。但是,故障电流放电的强度会随一些条件的变化而增加,如光伏电池距离缩短(这种情况下透明玻璃或塑料板厚度减少)、接触面积增加等。比如:由于清洁光伏组件的液体中含有导电物质,会造成导电面积扩大,从而导致意外的故障电流。在这种情况下虽然无法对危险电流预先检测,但如果发生意外会造成一定的危险。为了避免由此(类似突然从梯子上掉下来等)产生的安全隐患,也为了避免危险,在建设光伏并网发电系统时,用户应该遵循以下步骤:
1)将光伏组件的边框以及其他导电气部分与接地线连接
2)在对系统进行维护或对光伏组件进行清理时,断开逆变器与电网的连接
有了这些保护措施,人员安全就能够得到完全的保障。设计精密的无变压器型逆变器还有额外的保护,即使超过电气隔离型逆变器要求的安全标准,也勿需担心安全问题。